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The relativistic dynamics of a charged particle moving in a uniform magnetic field and a time-periodic
electric field is investigated. It is shown that various features such as nonlinear resonances, stochastic layers
near resonance separatrices, bifurcations of fixed points, and reconnection phenomena can be exhibited by the
particle when the relativistic effect becomes appreciable.@S1063-651X~96!05210-5#

PACS number~s!: 05.45.1b, 03.30.1p, 29.20.Hm, 47.20.Ky

I. INTRODUCTION

The subject of chaos has drawn considerable attention in
the past, due to the perception that complex behavior in the
motion of a system can be caused by rather simple governing
equations@1#. In most systems examined in the past, the
source of the chaotic behavior is nonlinear interaction terms
in the equations of motion. The quadratic response to the
environment in the logistic model of population growth, the
cubic restoring force in the Duffing oscillator, and nonlinear
coupling in the coupled oscillators are a few examples which
serve as physical origins for the complicated and stochastic
behavior of the model systems.

In recent papers it was reported that relativistic mass ef-
fects can make systems behave in significantly different
manners from those displayed by the corresponding systems
governed by nonrelativistic Newtonian equations of motion
@2–8#. Even the driven harmonic oscillator, a standard text-
book example of a system with a linear interaction, has been
shown to exhibit chaos when relativistic effects are consid-
ered@7#. The source of the complex relativistic behavior in
these cases lies in the nonlinearity from the relativistic ki-
netic energy term in the Hamiltonian. This relativistic non-
linearity can be considered properly when the motion of a
system becomes relativistic. The main purpose of the present
study is to illustrate the consequence of the relativistic ef-
fects using a simple and practically important model system,
where the relativistic nonlinearity results in a chaotic behav-
ior that is absent in the corresponding nonrelativistic system.

A charged particle moving in a constant magnetic field,
and an electric field oscillating in the plane perpendicular to
the magnetic field, can provide such a simple model. From
the early history of accelerators, this system has been con-
siderably studied. In the framework of nonrelativistic New-
tonian mechanics, when the frequency of the electric field is
set at the particle’s cyclotron frequency, the particle can be
accelerated without limits. In reality, however, due to the
relativistic mass effect, the orbital phase of the particle mo-
tion lags increasingly behind the phase of the electric field,
as the particle energy is increased. A continuous change in
the frequency of the electric field to lower values is thus
required if resonance is to be maintained@9#. In this paper we
show that if the frequency of the electric field is fixed, vari-
ous interesting features such as nonlinear resonances, sto-
chastic layers near separatrices, bifurcations of fixed points,
and reconnection phenomena can be exhibited by the system

when the relativistic effects become appreciable.
Extensive studies have been made during the last few de-

cades on a charged particle in a uniform magnetic field in-
teracting with an electromagnetic wave@10–14#. The onset
of chaos was detected in such a system in both relativistic
and nonrelativistic regimes, chaotic behaviors being some-
what varied in their details. The present system considered
here differs from those studied earlier, in that it is completely
integrable in the nonrelativistic regime. There is no nonlin-
earity other than that arising from the kinetic energy term in
the Hamiltonian, and thus any chaotic behavior exhibited by
our system is due solely to the relativistic effects.

II. REDUCTION TO THE ONE-DEGREE-OF-FREEDOM
PROBLEM

We consider a charged particle of massm and chargeq
immersed in a uniform magnetic fieldB5Bez moving under
the influence of a periodic driving electric field
E(t)5E0cosvtey . The relativistic equation of motion for the
particle is given by@9#

d

dt F mv

A12v2/c2
G5qv3B1qE~ t !. ~1!

The right hand side of the above equation represents the
Lorentz force exerted on the charged particle, and the term
m/A12v2/c2 in the brackets represents the relativistic mass.
In terms of mechanical momentump5mv/A12v2/c2, Eq.
~1! can be written by components as

dpx
dt

5
qBpy

Am21p2/c2
, ~2!

dpy
dt

52
qBpx

Am21p2/c2
1qE0cosvt, ~3!

dpz
dt

50. ~4!

We note that there are no terms depending on coordinate
variables in Eqs.~2!–~4!, and thus all information on the
dynamics of the particle can be obtained by inspecting the
system in momentum space. A further reduction in the di-
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mension of the phase space can be achieved by noting that
thez component of the momentum is conserved. Introducing
the effective massme as

me
25m21pz

2/c2, ~5!

we immediately see that the motion of the particle can be
described in the two-dimensional phase space by Eqs.~2!
and~3!, with m replaced byme andp5Apx21py

2 interpreted
as the distance from the origin in that phase space. At this
point it is worthwhile to note that the effective mass, which
plays the role of the mass of the particle in the prescribed
two-dimensional phase space, arises solely from the relativ-
istic consideration. In the nonrelativistic limit,c→`, the ef-
fective massme equals the rest massm, as can be seen from
Eq. ~5!.

Let us now introduce an equivalent one-degree-of-
freedom Hamiltonian for our particle. If we denotepx and
py byQ andP, respectively, the equations of motion for our
particle can be written as

dQ

dt
5

V0P

A11~Q21P2!/me
2c2

, ~6!

dP

dt
52

V0Q

A11~Q21P2!/me
2c2

1qE0cosvt, ~7!

whereV05qB/me is the nonrelativistic cyclotron frequency
of the particle of massme and chargeq undergoing circular
motion in a uniform magnetic fieldB. It is then immediately
clear that Eqs.~6! and ~7! can be derived from the Hamil-
tonian

H~P,Q!5V0me
2c2A11~Q21P2!/me

2c22QqE0cosvt.
~8!

It should be noted that, although our coordinateQ and mo-
mentum P represent two orthogonal components of me-
chanical momentum, they are canonically conjugate to each
other, as shown in the Appendix.

In the absence of the driving electric field, Eqs.~6! and
~7! can be easily solved to yield the solutions

Q~ t !5AQ0
21P0

2sinS V0

g
t1f0D , ~9!

P~ t !5AQ0
21P0

2cosS V0

g
t1f0D , ~10!

whereQ0 andP0 are the initial values of the canonical vari-
ablesQ andP, respectively, and

g5A11~Q0
21P0

2!/me
2c2, ~11!

f05tan21~Q0 /P0!. ~12!

We find from Eqs.~9! and ~10! that the relativistic particle
moves along a circle of radiusAQ0

21P0
2 with frequency

V0 /g.

Before leaving this section, we remark that, in the nonrel-
ativistic limit c→`, the Hamiltonian given by Eq.~8! re-
duces to

H~P,Q!5
V0

2
P21

V0

2
Q22QqE0cosvt, ~13!

which is just the Hamiltonian describing a driven simple
harmonic oscillator, a completely integrable system, with
mass 1/V05m/qB and spring constantV05qB/m. Thus the
present system, in the nonrelativistic limit, exhibits regular
dynamics without any complex behavior.

III. NUMERICAL SOLUTIONS OF THE EQUATIONS
OF MOTION

If the relativistic effects are fully taken into account, the
situation becomes fundamentally different from that of the
nonrelativistic system. Numerical integrations of Eqs.~6!
and ~7! enable us to obtain the phase-space maps shown in
Fig. 1. All the figures are drawn at the parameter values
me51, q51, c51, V051, andv50.5 ~in arbitrary units!,
while the amplitude of the driving electric fieldE0 is varied.
A variety of features that are normally attributed to a broad
class of nonlinear systems can be observed in the present
system. For instance, nonlinear resonances, stochastic layers

FIG. 1. Phase-space maps of the Hamiltonian~8! for the param-
eter valuesme51, q51, c51, V051, andv50.5 ~in arbitrary
units!. The amplitude of the driving electric fieldE0 is 0.3 for ~a!,
0.6 for ~b!, 1.8 for ~c!, 2.2 for ~d!, 2.4 for ~e!, and 2.6 for~f!.
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near the separatrices of resonance islands, bifurcations of
fixed points, and reconnection phenomena can be observed
through a close inspection of Fig. 1. Detailed descriptions of
the observation are given below.

From Fig. 1~a!, drawn atE050.3, we can clearly see the
period-1 resonance with an elliptic fixed point (Q>21.94,
P50) in the center of the island and a hyperbolic fixed point
(Q>1.3, P50) on the island boundary. As is well known
@10,15#, a primary period-n resonance occurs at the energy
Enm , satisfying the resonance condition

nV~Enm!5mv, ~14!

wheren andm are integers, andV is the frequency of the
motion of the unperturbed system. For our system described
in Sec. II,V5V0 /g. We note that, if the potential is sym-
metric, V(2q)5V(q), only the odd-period resonances
(n5odd! are of importance. Furthermore, if the driving force
varies sinusoidally with time, only the primary resonances
with m51 are of importance.

A close inspection of the phase-space map near the hy-
perbolic fixed point can reveal a possible stochastic behavior
of the system. If a resonance island has a hyperbolic fixed
point on its boundary, the frequency of the local rotational
motion around the elliptic fixed point decreases as the sepa-
ratrix is approached, and becomes zero on the separatrix.
Resonances between this frequency and the driving fre-
quency lead to the formation of an infinite number of
second-order resonance islands in the neighborhood of the
separatrix, inducing very complicated motions nearby. This
qualitatively demonstrates the existence of the stochastic
layer near a separatrix@10,15#. The stochastic layer, how-
ever, is bounded by surrounding Kol’mogorov-Arnol’d-
Moser ~KAM ! curves atE050.3.

Between the two fixed points above mentioned, there ap-
pears a period-1 fixed point (Q>0.44,P50) the origin of
which is basically different in nature from the other fixed
points belonging to the resonance. If the amplitude of the
driving electric fieldE0 decreases to zero, this period-1 fixed
point collapses into the point of phase space where the sys-
tem has minimum energy, and in the present case this point
corresponds to the center of the phase space. For this reason,
we refer to this fixed point as the central fixed point. If we
increaseE0, the central fixed point approaches and eventu-
ally collides with the period-1 hyperbolic fixed point. After
the collision, the two fixed points disappear via an inverse
saddle node bifurcation, leading to a disappearance of the
hyperbolic fixed point of the period-1 resonance island, as
can be seen from Fig. 1~b!. Without the hyperbolic fixed
point on its boundary, the period-1 resonance island becomes
free of chaos near the separatrix@12#. In Sec. IV, we theo-
retically calculate the critical value ofE0 at which this bifur-
cation phenomenon occurs.

Figure 1~c! implies that yet another kind of bifurcation
has occurred. There emerge two period-3 resonance islands,
a primary resonance occupying the outer region of phase
space, and a second-order resonance occupying the inner re-
gion of phase space. The primary period-3 resonance exists
for all nonzero values ofE0, although its existence can
barely be observed at smallE0 due to the fact that the width
of the resonance island approaches zero asE0→0. In con-

trast, the second-order period-3 resonance has bifurcated out
of the elliptic fixed point of the primary period-1 resonance
at some critical value ofE0. This critical value shall be es-
timated shortly in Sec. IV. AtE051.8, at which Fig. 1~c!
was drawn, the second-order period-3 resonance island is
clearly separated from the period-1 elliptic fixed point, and
its width is already comparable to that of the primary
period-3 resonance. We should emphasize that there still ex-
ist many KAM curves between the two period-3 resonances.

As E0 grows to 2.2, there occurs a great change in the
topology of the phase space as shown in Fig. 1~d!. The KAM
curves dividing the two period-3 resonance islands have van-
ished, and there appear invariant curves of different type
dividing other parts of the phase space. This phenomenon,
known as reconnection@16–18#, involves the merging of two
separatrices. Since there always exists a stochastic layer near
the separatrix of the resonance island which has a hyperbolic
fixed point on its boundary, one may suggest that, when two
resonances undergo reconnection via separatrix merging,
there should be stochastic orbits wandering along both sepa-
ratrices. We show one such orbit in Fig. 2 which was drawn
for a single initial condition atE052.0. This stochastic be-
havior can be viewed to occur as a result of the overlap of
two neighboring resonances@15#. As is widely understood,
the resonance overlap is synonymous with global chaos be-
cause, when two resonance islands overlap with each other,
one orbit that is stochastically wandering in the neighbor-
hood of a resonance’s separatrix can jump into the neighbor-
hood of another resonance’s separatrix, and then jump back
at some later time. However, a reconnection differs from a
resonance overlap in that, in the former case, the stochastic
motion along the two separatrices is interrupted after another
type of invariant curve builds up, as can instantly be seen
from Fig. 1~d!. In addition, during the reconnection one of
the two heteroclinic orbits transforms into a homoclinic orbit
@16–18# @compare Fig. 1~c! with Fig. 1~d!#.

Finally, a further increase inE0 causes the elliptic and
hyperbolic fixed points of the second-order period-3 reso-
nance to approach each other and to disappear in pair via the
inverse saddle node bifurcation after the collision as shown
in Fig. 1~e!. The elliptic and hyperbolic fixed points of the
primary period-3 resonance are bound to subsequently en-
counter the same fate, as can be seen in Fig. 1~f!.

FIG. 2. Same as Fig.1, exceptE052.0. One initial condition is
taken.
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IV. THEORETICAL ANALYSIS

For our theoretical analysis, it is convenient to carry out a
canonical transformation into the action-angle space. If we
denote the action and angle variables for the unperturbed
Hamiltonian by I and u, respectively, the one-degree-of-
freedom Hamiltonian derived in Sec. II can be written as

H~ I ,u!5H0~ I !2qE0A2Icosu cosvt

5V0mecA2I1me
2c22qE0AI /2

3@cos~u2vt !1cos~u1vt !#. ~15!

Let us first consider the critical value ofE0 at which the
central fixed point and the period-1 hyperbolic fixed point
collapse against each other. Through numerical computation,
we determine this value to beE050.433. Shown in Figs.
3~a! and 3~b! are the phase-space maps just below and above
this value ofE0. In order to calculate this value theoretically,
we temporarily ignore the second term in the brackets of Eq.
~15! which oscillates quickly, and perform a canonical trans-
formation with the generating function

F2~J,u!5J~u2vt !. ~16!

The new HamiltonianH8, expressed in terms of the slow
variables

c5u2vt, ~17!

J5I , ~18!

takes the form

H8~J,c!5V0mecA2J1me
2c22vJ2qE0S J2D

1/2

cosc,

~19!

which immediately yields Hamilton’s equations

dc

dt
5

V0mec

A2J1me
2c2

2v2
qE0

2A2J
cosc, ~20!

dJ

dt
52qE0S J2D

1/2

sinc. ~21!

These equations describe the motion seen in a frame rotating
at a rate ofv. The fixed point (Jf ,c f) of the above equations
can be found by settingdc/dt5dJ/dt50. From Eq.~21! we
obtainc f50 or p, and from Eq.~20!

V0mec

A2Jf1me
2c2

2v56
qE0

2A2Jf
. ~22!

The plus and minus signs on the right hand side correspond,
respectively, toc f50 andc f5p. To determine the stability
of a fixed point, we linearize Eqs.~20! and ~21!. If the ei-
genvalues of the linearized equations have imaginary~real!
values, then the corresponding fixed point is stable~unstable!
@1,10#. A straightforward analysis reveals that the fixed point
is stable if

~qE0!
2

8Jf
2
qE0V0mecA2Jf
2~2Jf1me

2c2!3/2
cosc f.0. ~23!

It is helpful to plot Eq.~22! in a graph, as shown in Fig. 4,
where parameter values are chosen such that
me5q5c5V051, v50.5, and E050.25 ~in arbitrary
units!. The lettersS and U indicate, respectively, that the
point is stable or unstable. Note that at the present parameter
values there are three fixed points, one of which is elliptic
~stable,c f5p), another central~stable,c f50) and another
hyperbolic ~unstable, c f50). Here one can immedi-

FIG. 3. Phase-space maps near the bifurcation point for the
same parameters as in Fig. 1. The amplitude of the driving electric
field E0 is 0.432 for~a!, and 0.434 for~b!.

FIG. 4. Graphical solution of Eq.~22! showing fixed points and
their stability for the parametersme51, q51, c51, V051,
v50.5, andE050.25 ~in arbitrary units!. The solid curve corre-
sponds to 1/(A2J11)20.5, and the dotted curves correspond to
6(E0/2A2J). S andU represent stable and unstable fixed points,
respectively.
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ately predict that, ifE0 is increased above a certain value, the
dotted curve (c f50) above theJ axis will not cross the
solid curve, meaning that the two fixed points~central and
hyperbolic! will be lost. A simple calculation shows that the
bifurcation occurs at the critical value ofE050.45, which
agrees roughly with 0.433 that was previously determined
from Fig. 3. To better understand the situation during the
bifurcation, we numerically integrate Eqs.~20! and~21!, and
obtain Fig. 5. Figures 5~a! and 5~b! correspond, respectively,
to the cases below and above the critical value ofE0.

To improve the accuracy of the theoretical estimation of
the critical value ofE0, we need to go to higher-order per-
turbation theories such as Lie perturbation theories@19,20#.
With the second term in the brackets of Eq.~15! back in its
place, we perform a calculation to second order, and obtain
the Hamiltonian

H̄~ Ī ,ū !5V0mecA2Ī1me
2c22

~qE0!
2

8@v1V~ Ī !#

1

~qE0!
2Ī
dV~ Ī !

dĪ

8@v1V~ Ī !#2
2qE0AĪ /2cos~ ū2vt !,

~24!

where

V~ Ī !5
V0mec

A2Ī1me
2c2

, ~25!

and Ī and ū stand for the action and angle variables, respec-
tively. In obtaining the above Hamiltonian using Lie pertur-
bation theories, due consideration should be given to the first
term in the brackets of Eq.~15!. Since our interest is re-
stricted to the region near the period-1 resonance, this term
gives rise to secularity. Thus the first-order Hamiltonian
should be chosen so as to eliminate the secular term. Once
we obtain a Hamiltonian which is correct to second order, we
can follow the same procedure represented by Eqs.~16!–
~23!. The improved critical value ofE0 so obtained is
E050.432, which is obviously in a good agreement with the
one determined from Fig. 3.

We next wish to study the mechanism through which the
second-order period-3 resonance is formed. It is known that a
second-order resonance occurs when the frequency of the
local motion around a primary resonance is rationally related
with the driving frequency@10,12#. It therefore is important
to know the behavior of the system near the primary period-1
resonance. The motion around the primary period-1 reso-
nance can be effectively described by the Hamiltonian of Eq.
~19!. In particular, in the neighborhood of the period-1 ellip-
tic fixed point, the Hamiltonian can be expanded to yield

H8~dJ,dc!>2
~dJ!2

2M
2 1

2K~dc!2, ~26!

where

1

M
5

V0mec

~2Jf1me
2c2!3/2

1
qE0A2
8Jf

3/2 , ~27!

K5qE0S Jf2 D 1/2. ~28!

The frequency of the local rotational motion just near the
elliptic fixed point is then given by

V f85S KM D 1/25FqE0S Jf2 D 1/2S V0mec

~2Jf1me
2c2!3/2

1
qE0A2
8Jf

3/2 D G1/2.
~29!

It should be noted that the motion around the elliptic fixed
point is counter-clockwise, which is manifested by the minus
signs in Eq.~26!. A second-order resonance bifurcates out of
the elliptic fixed point whenever the following resonance
condition is met:

V f8

v
5
m

n
[a, ~30!

where n andm are integers. Here the introduction of the
concept of the rotation numbera @1,10# turns out to be use-
ful. In Fig. 1~c!, the period-3 elliptic fixed point accompany-
ing the second-order period-3 resonance completes its cycle
clockwise around the period-1 elliptic fixed point every third
period of the driving electric field, and the corresponding
local rotation number isa5 1

3. Since we are now in a frame
rotating at a ratev, the local rotation number of the second-
order resonance in this frame should be

FIG. 5. Trajectories of the Hamiltonian~19! in (c,J) space for
the same parameters as in Fig. 1.~a! At E050.4, there are three
fixed points: an elliptic fixed point at (p,2.47), a hyperbolic fixed
point at (0,0.55), and a central fixed point at (0,0.13).~b! At
E050.46, there is one fixed point: an elliptic fixed point at
(p,2.63).
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a5 1
32152 2

3 , ~31!

where the minus sign in front of 2/3 indicates that the corre-
sponding motion is counterclockwise. Substituting Eqs.~29!
and~31! into Eq. ~30!, we finally determine that the bifurca-
tion occurs at the critical value ofE051.65. In Fig. 6, we
present a phase-space map just after the birth of the second-
order period-3 resonance.

V. CONCLUSION

We have investigated the relativistic dynamics of a
charged particle in a uniform magnetic field and an oscillat-
ing electric field. It has been shown that, even though the
corresponding nonrelativistic system yields simple integrable
dynamics, the system can exhibit a variety of complex be-
haviors when relativistic effects become appreciable. For in-
stance, nonlinear resonances, stochastic layers near separa-
trices, bifurcations of fixed points, and reconnection
phenomena may occur in the system. All of these features
originate from the relativistic nonlinearity, i.e., the nonlinear-
ity in the relativistic kinetic energy term in the Hamiltonian.
Thus it is evident that the relativistic nonlinearity alone can
give rise to chaos.

From a practical viewpoint, we hope that the present work
will contribute toward a better understanding of the relativ-
istic dynamics of particles in an accelerator. It may also help
to better understand the complex motion of an ion that may
occur in the Fourier-transform ion cyclotron resonance mass
spectrometry experiments@9#.
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APPENDIX

We wish to show that the variablesQ andP of Eq. ~8! are
canonical variables. The Hamiltonian for our relativistic
charged particle in a uniform magnetic fieldB5Bez and a

sinusoidal electric fieldE5E0cosvtey can be written as

H5Am2c41~p82qA!2c21qf, ~A1!

wherep8 is the canonical momentum given by

p85p1qA, ~A2!

andf andA are, respectively, scalar and vector potentials
given by

f52yE0cosvt, ~A3!

A52yBex . ~A4!

Substituting Eqs.~A3! and ~A4! into Eq. ~A1! and denoting
the constantspx8 andpz8 by a andb, we obtain

H5Ame
2c41c2~a1qBy!21c2py8

22qyE0cosvt,
~A5!

whereme is defined by

me
25m21b2/c2. ~A6!

We now perform a canonical transformation from
(y,py8) to (Q8,P8) with a generating function of the second
kind,

F2~y,P8,t !5S y1
a

qBDP82
aE0

vB
sinvt. ~A7!

The relation between (y,py8) and (Q8,P8) is given by

py85
]F2

]y
5P8, ~A8!

Q85
]F2

]P8
5y1

a

qB
, ~A9!

and the resulting Hamiltonian is

H85H1
]F2

]t

5Ame
2c41c2~qBQ8!21c2P822qQ8E0cosvt.

~A10!

Finally, a scale transformation

Q5qBQ8, ~A11!

P5P8 ~A12!

yields the Hamiltonian

H95qBH85V0me
2c2A11~Q21P2!/me

2c22QqE0cosvt,
~A13!

whereV05qB/me . Equation ~A13! is identical with Eq.
~8!. We have thus proved that the transformation from (y,
py85py) to (Q5qBQ85qBy1px85px , P5py85py) is an
extended canonical transformation.

FIG. 6. Phase-space map after the birth of the second-order
period-3 resonance for the same parameters as in Fig. 1, except
E051.67.
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